Spin-Orbit Interactions

The perturbation Hamiltonianis: H' = —i - B

The magnetic dipole moment of the electron is related to its spin
angular momentum:
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where up is the Bohr magneton: Up =
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and the magnetic field at the site of the electron is:
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The factor of “2” comes from the Thomas precession.

The perturbation Hamiltonian becomes: H' =
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The spin-orbit interaction undermines the usefulness of the [n Il m; m)
states. The |[nlm; m,) states are shown on the next page.
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Energy levels E, and degenerate states ¥,
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for the one-electron atom. The dynamics of the

atom is governed only by the Coulomb force, as in Figure 7-2. The spin of the electron may be
either up (1) or down ({) for each assignment of the set of quantum numbers (zZm,).

E,

€=0 ¢=1 - =2 €=3
torl torl torl torl
o I5 - 4 N 32 stat
n - 4 Tx2) 4s D) 3p 572 T2 f . states
- =3 % G 2 F TGx2) v
L n= 2p L 8 states
1x2) (3x2)
—n= —1s K 2 states
(1x2) .
We can use m; and mg as “good quantum -
Figure 8-26

numbers” to determine the stationary
states as long as we are able to specify
eigenvalues independently for the
observables L, and S,. These two

guantities are separately conserved

whenever there exist states of definite

energy in which L, and S, also have

definite values.

Independently oriented L and S vectors
representing a state with good quantum
numbers m, and m_. In this case L refers to
the £= 1 state with m,= 1.

Random orientations



Recall that our perturbation Hamiltonian is:
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We need eigenstates described by quantum numbers that are
eigenstates of the Hamiltonian H’. Why? Because we need to calculate
the first-order correction to the stationary states in the H-atom due to

the - [i - B interaction (a.k.a. the S-I interaction).
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Since our H” implies a dependence of the energy on the relative

S-L
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orientation of L and §, the two vectors must be coupled together as a
result of this new dynamical variation of the energy. We can see the

coupling in the figure if we fix the energy by fixing the angle between L
and S while maintaining the z components of the two vectors.

Figure 8-27
Coupling of spin and orbital angular momenta owing to the spin—orbit interaction. The effect
is represented as a precession of L and S about J. The indicated vector additions correspond to

the configurations displayed in parts (4) and (¢) of Figure 8-22.
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L, and S, cannot be assigned definite values; however a state of definite
energy can still have a definite value of J,. The total angular
momentum is conserved as long as the atom is isolated.



Let’s look at the following figure to see how we can construct states of

. 1 . 1
]—£+2 and ]—{’—E.

Figure 8-22
Vector addition of orbital and spin angular momenta. The factors of % are suppressed, and the

/=1 case is chosen for L. The sum 1 + % produces the results § and 3 for the vector J.
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How do we go from the |n £ m, m) states to the |n ?j mj) states?

Figure 8-24

Energy levels E, and degenerate states ¥, tim; for the one-electron atom. Each assignment of
quantum numbers (nZ;) implies 27 + 1 possible values of m;, as indicated in parentheses at
cach level. The spectroscopic notation nL; is used to designate the states. This scheme is an
alternative to the one described in Figure 8-13. The Coulomb force provides the only

interaction in each of the two figures.
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All “fine and good,” but how are these states eigenstates of the S-L

operator in our perturbation Hamiltonian, H’ ?

First of all, the total angular momentum of the atomis | = L+ §, and

FJ= E49)-(+9)



Solving this for S - I we find:
]2 _ L2 _ SZ
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S-L=

We can now find the expectation value for S-L by using our new
eigenstates |n ?j mj):

For example:
(J?) = (n {’jmj|]2|n fjmj) =j(j + 1)h?

Continuing on with the other expectation values we find the following:
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We still have to calculate the expectation value ofr—3 :
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Collecting our calculations, we find the following:
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where Ep = Zm.c2%; .



Let’s combine our two contributions to the fine structure splitting:
1)  The relativistic kinetic energy, and
2)  The spin-orbit coupling
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Now we can calculate the total energy of each n j state.

Enj = Erg + (H,>fs

. a’( n 3
Enjz_En 1+ﬁ -|—l_Z
2




The corresponding energy level diagram is shown in the following
figure:

Figure 8-29

Energy levels E, ; for the one-electron atom. Each choice of n and j gives a pair of degenerate
states nL; with two different values of ¢. The fine structure effects shift the levels away from
their positions in Figure 8-24. The greatly exaggerated splittings indicate how the shifts
diminish with increasing values of the quantum numbers.
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These are the energy levels for the |n Lj mj) eigenstates for a one-
electron atom.



