
Spin-Orbit	Interactions	
	
The	perturbation	Hamiltonian	is:					𝐻" = −𝜇 ⋅ 𝐵	
	
The	magnetic	dipole	moment	of	the	electron	is	related	to	its	spin	
angular	momentum:	
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where	𝜇+ 	is	the	Bohr	magneton:		 𝜇+ =
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and	the	magnetic	field	at	the	site	of	the	electron	is:	
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The	perturbation	Hamiltonian	becomes:		 	𝐻" = 	 .B
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The	factor	of	“2”	comes	from	the	Thomas	precession.	
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The	spin-orbit	interaction	undermines	the	usefulness	of	the	 𝑛	𝑙	𝑚7	𝑚* 	
states.		The		 𝑛	𝑙	𝑚7	𝑚* 	states	are	shown	on	the	next	page.		
	



	
	
We	can	use	𝑚7 	and	𝑚*	as	“good	quantum	
numbers”	to	determine	the	stationary	
states	as	long	as	we	are	able	to	specify	
eigenvalues	independently	for	the	
observables	𝐿N	and	𝑆N.		These	two	
quantities	are	separately	conserved	
whenever	there	exist	states	of	definite	
energy	in	which	𝐿N	and	𝑆N	also	have	
definite	values.			
	



Recall	that	our	perturbation	Hamiltonian	is:	
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We	need	eigenstates	described	by	quantum	numbers	that	are	
eigenstates	of	the	Hamiltonian	H’.		Why?		Because	we	need	to	calculate	
the	first-order	correction	to	the	stationary	states	in	the	H-atom	due	to	
the	– 𝜇 ⋅ 𝐵	interaction	(a.k.a.	the	𝑆 ⋅ 𝐿	interaction).	
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Since	our	H’	implies	a	dependence	of	the	energy	on	the	relative	
orientation	of	𝐿	and	𝑆,	the	two	vectors	must	be	coupled	together	as	a	
result	of	this	new	dynamical	variation	of	the	energy.		We	can	see	the	
coupling	in	the	figure	if	we	fix	the	energy	by	fixing	the	angle	between	𝐿	
and	𝑆	while	maintaining	the	z	components	of	the	two	vectors.	
	

	
Lz	and	Sz	cannot	be	assigned	definite	values;	however	a	state	of	definite	
energy	can	still	have	a	definite	value	of	Jz.		The	total	angular	
momentum	is	conserved	as	long	as	the	atom	is	isolated.	



Let’s	look	at	the	following	figure	to	see	how	we	can	construct	states	of	
𝑗 = 	ℓ + Q
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How	do	we	go	from	the	 𝑛	ℓ	𝑚ℓ	𝑚* 	states	to	the	 𝑛	ℓ	𝑗	𝑚X 	states?	
	

	
All	“fine	and	good,”	but	how	are	these	states	eigenstates	of	the	𝑆 ⋅ 𝐿	
operator	in	our	perturbation	Hamiltonian,	H’	?	
	
First	of	all,	the	total	angular	momentum	of	the	atom	is	𝐽 = 𝐿 + 𝑆,	and	

𝐽 ⋅ 𝐽 = 	 𝐿 + 𝑆 ⋅ 𝐿 + 𝑆 	



Solving	this	for	𝑆 ⋅ 𝐿		we	find:	

𝑆 ⋅ 𝐿 =
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We	can	now	find	the	expectation	value	for	𝑆 ⋅ 𝐿		by	using	our	new	
eigenstates		 𝑛	ℓ	𝑗	𝑚X :	
	
For	example:	
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Continuing	on	with	the	other	expectation	values	we	find	the	following:	
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We	still	have	to	calculate	the	expectation	value	of	 Q
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Collecting	our	calculations,	we	find	the	following:	
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where					𝐸3` = 	 aB	01IB	

bB

cB
		.	

	



Let’s	combine	our	two	contributions	to	the	fine	structure	splitting:	
1)	 The	relativistic	kinetic	energy,	and	
2)	 The	spin-orbit	coupling	
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Now	we	can	calculate	the	total	energy	of	each		𝑛	𝑗		state.	
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The	corresponding	energy	level	diagram	is	shown	in	the	following	
figure:	

	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

These	are	the	energy	levels	for	the	 𝑛	ℓ	𝑗	𝑚X 	eigenstates	for	a	one-
electron	atom.	
	
	


